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Abstract

A Chebyshev-collocation method in space is introduced, which allows an accurate calculation of three-dimensional

lid-driven cavity flows. The time integration is carried out by an Adams–Bashforth backward–Euler scheme. The accu-

racy of the method relies on the representation of the solution as a superposition of stationary local asymptotic solu-

tions and a residual flow field. This way the most severe discontinuities in the boundary conditions, which arise along

the lines where moving and stationary walls meet, are taken care of analytically and thus do not spoil the numerical part

of the solution. Calculations are carried out for no-slip boundary conditions at the cavity end-walls as well as for peri-

odic end-wall conditions. In general, the spatial accuracy is better than fifth order. For rigid end-wall conditions, the

accuracy is reduced near the end-walls to OðN 3=2Þ, but recovers in the bulk. Tabulated data are provided for the most

interesting flow properties.

� 2005 Elsevier Inc. All rights reserved.
1. Introduction

The lid-driven-cavity problem is one of the most important benchmarks for numerical Navier–Stokes

solvers. Its importance results from the fundamental rectangular or square geometry and the simple driving

of the flow by means of the tangential motion with constant velocity of a single lid, representing Dirichlet

boundary conditions. Moreover, the driven-cavity flow exhibits a number of interesting physical features.

The Prandtl–Batchelor theorem is easily demonstrated as the primary vortex, driven by the wall motion,

develops a core of constant vorticity as the Reynolds number is increased (see, e.g. [10]). In addition, flow
separation from the stationary wall and the existence of an infinite sequence of viscous corner eddies in the

rigid 90�-corners can be observed [35]. The system also exhibits a particular singularity in the boundary

conditions where moving and stationary walls meet [47,24,27]. Last but not least, the flow in an infinitely
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extended system undergoes a sequence of instabilities and transitions when the speed of the lid is increased

before becoming turbulent. The particular scenario depends very much on the aspect ratio of the cavity. A

recent review on the flow physics in the driven cavity was given by Shankar and Deshpande [42].

Ghia et al. [19] and Schreiber and Keller [40] were among the first to publish benchmark data on the lid-

driven cavity flow. These classical papers are frequently referenced even today. At about the same time, the
interest in the flow physics of interior recirculating flows was revived, after the pioneering works of Burg-

graf [10] and Pan and Acrivos [36]. The renewed interest led to a series of papers by Koeseff et al. [31], Freitas

et al. [18], and coworkers, focussing on the three-dimensional vortical structures and on end-wall effects.

During the course of time the grid resolution and the numerical accuracy were significantly improved

and even more accurate solutions of the two-dimensional problem have been calculated. Highly accurate

two-dimensional solutions have been obtained by Botella and Peyret [8] using a spectral method in which

the effect of the corner discontinuity on the numerical solution was reduced by the incorporation of an

asymptotic solution for the flow in the direct vicinity of the singular corners. For an efficient elimination
of the singularity, they made use of the leading-order Stokes flow [35] plus the first-order nonlinear correc-

tion (see, e.g. [24]). A similar procedure, merely taking into account the leading-order Stokes-flow solution,

was previously introduced by Schultz et al. [41].

Since two-dimensional, time-dependent calculations are significantly less costly than full three-dimen-

sional simulations, the Hopf bifurcation at high Reynolds numbers of the pure two-dimensional flow

was investigated with high precision by Goodrich et al. [22], Shen [44], Abouhamza and Pierre [1], and Au-

teri et al. [3,4]. While these calculation are of fundamental interest for benchmarking, they are less relevant

for real flows. The oscillatory two-dimensional flows exist only for such high Reynolds numbers
Re = O(104) that they are very unlikely to be observed experimentally. Albensoeder et al. [2] have shown

that the two-dimensional steady flow becomes unstable to genuinely three-dimensional flows at Reynolds

numbers one order of magnitude smaller than those at which the two-dimensional flow oscillations have

been computed.

Some of the first three-dimensional cavity-flow calculations were carried out by De Vahl Davis and

Mallinson [14] and Goda [20]. The relevance of three-dimensional flows in general was demonstrated by

Freitas et al. [18]. In particular, three-dimensional effects near the end-walls of a finite-size system which

can be realized in the laboratory were pointed out by Koseff and Street [30]. In order to clarify the observed
three-dimensional flow structures numerically, a series of benchmark tests for the lid-driven square cavity

was undertaken for a Reynolds number of 3200. The results, however, published in Deville et al. [15],

remained inconclusive, because the numerical solutions obtained by different methods and resolutions scat-

tered significantly. An important point in this regard is the fact that end-wall effects in finite-length systems

can, to a certain degree, suppress the intrinsic three-dimensional flow instabilities in the bulk of the cavity

[2]. During the last years, further three-dimensional calculations have become available, see e.g. Ku et al.

[32], Cortes and Miller [13], Babu and Korpela [5], and Wang and Sheu [48]. Further contributions of Iwa-

tsu et al. [29], Chiang et al. [11,12], and Sheu and Tsai [45] primarily focussed on the flow structure and
topology, and not on benchmarking.

Until recently, numerical calculations have predominantly be performed for two-dimensional flows. We

have, however, carried out the first correct three-dimensional linear stability analysis of the two-dimensional

cavity flow with periodic boundary conditions in the spanwise direction [2]. The uncertainty of the critical

Reynolds number was of the order of magnitude of 1%. Despite the sparseness of reliable stability data,

our results were validated by comparison with neutral-stability data of Ding and Kawahara [16,17] and

by critical Reynolds numbers of Kuhlmann et al. [33]. Additional confidence was gained from our own

experimental results [2] and from the numerical work of Spasov et al. [46] and Shatrov et al. [43]. After
having become three-dimensional, the cavity flow develops into a turbulent flow upon a further increase

of the Reynolds number. Apart from the work of Leriche and Gavrilakis [34], the turbulent flow regime

has not yet been seriously tackled numerically for Reynolds numbers of the order of Re = O(104) and above.
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During our investigation of the transition to three-dimensional flow the lack of numerical data for

nonlinear three-dimensional flows became obvious. Owing to their physical significance and the fact that

laminar three-dimensional flows have become accessible by numerical methods, we have carried out a num-

ber of systematic calculations in order to provide high-accuracy numerical data for the three-dimensional

cavity flow. In the next section, the problem will be formulated. Thereafter, the numerical methods will be
described and a validation of the code is performed. Our benchmark results are presented and discussed in

Section 5. Finally, a summary of the results is provided in the conclusion.
2. Problem formulation

We consider the flow of a Newtonian fluid with constant viscosity m and constant density q in a rectan-

gular cavity of the size d · h · l in x-, y-, and z-direction, respectively. The flow is driven by the wall at
x = �d/2 which moves tangentially in y-direction with constant velocity V. The geometry is sketched in

Fig. 1.

The scales h, m/h, qm2/h2, and h2/m are used to non-dimensionalize the length x = (x, y, z), velocity u = (u,

v, w), pressure p, and time t, respectively. The scaled Navier–Stokes equations then take the form
ou

ot
þ u � ru ¼ �rp þr2u; ð1aÞ

r � u ¼ 0: ð1bÞ

The no-slip/no-penetration boundary conditions in the x- and y-directions are:
uðx ¼ �C=2Þ ¼ Re ey ; ð2aÞ

uðx ¼ C=2Þ ¼ 0; ð2bÞ

uðy ¼ �1=2Þ ¼ 0; ð2cÞ

where the Reynolds number is defined as
Re ¼ Vh
m
: ð3Þ
Fig. 1. Geometry of the lid-driven cavity.
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The geometry is characterized by two aspect ratios, the cross-sectional aspect ratio
C ¼ d
h

ð4Þ
and the span aspect ratio
K ¼ l
h
; ð5Þ
the latter of which defines the extent of the system in z-direction. On the boundaries at z = ±K/2, we impose

either no-slip/no-penetration boundary conditions,
uðz ¼ �K=2Þ ¼ 0; ð6Þ
or periodic boundary conditions
uðz ¼ K=2Þ ¼ uðz ¼ �K=2Þ and pðz ¼ K=2Þ ¼ pðz ¼ �K=2Þ: ð7Þ
The no-slip boundary conditions are appropriate for calculations representing a finite container. The peri-

odic boundary conditions, on the other hand, are useful for the computation of flows unperturbed by the

sidewalls. These latter boundary conditions are frequently used when bulk flow instabilities are studied.
Yet, the periodic boundary conditions limit the maximum modulation length of the three-dimensional

pattern to K, i.e., the wave-number spectrum in z-direction of the flow structure is bounded from below

and long-wavelength modulations are suppressed.
3. Numerical procedure

3.1. Discretization and algorithm

The numerical scheme is an extension to three dimensions of the two-dimensional numerical scheme of

Botella and Peyret [8]. The spatial discretization is achieved by using the so-called PN �PN�2 collocation

method [39,8,37]. In this procedure, the velocities are approximated by polynomials of the order N while

the pressure is approximated by polynomials of the order N � 2. Explicitly, the velocity is represented as
uðxÞ ¼
XNx

i¼0

XNy

j¼0

XNz

k¼0

ûijkhi
2

C
x

� �
hj 2yð Þhk

2

K
z

� �
; ð8Þ
with polynomials hn of orders Nx, Ny, and Nz in the x-, y-, and z-directions, respectively. The computational

nodes are the Gauss–Lobatto points
xijk ¼ xi; yj; zk
� �

¼ C
2
cos i

p
Nx

� �
;
1

2
cos j

p
Ny

� �
;
K
2
cos k

p
Nz

� �� �T
; ð9Þ
with i = 0, . . ., Nx, j = 0, . . ., Ny, and k = 0, . . ., Nz. The pressure is approximated by
pðxÞ ¼
XNx�1

i¼1

XNy�1

j¼1

XNz�1

k¼1

p̂ijk�hi
2

C
x

� �
�hj 2yð Þ�hk

2

K
z

� �
ð10Þ
using polynomials �hn of order less by 2 compared to hn. This ansatz is used for rigid boundary conditions in

z-direction.
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For periodic boundary conditions, the polynomials hkð2z=KÞ and �hkð2z=KÞ in (8) and (10) are replaced

by harmonics ~hkð2=K zÞ. These harmonics are computed on an equidistant grid such that zk in (9) must be

replaced by
zk ¼
K
2

2ðk � 1Þ
Nz � 1

� 1

� �
: ð11Þ
Note that the index for the computational nodes in z-direction now runs from k = 1 to k = Nz � 1. Hence,

all functions are represented in Fourier space FN�2 by the Fourier modes e�ipnz/K with n = �(Nz�1)/
2, . . ., (Nz�1)/2�1. This representation allows an easy change from rigid to periodic boundary conditions

in z-direction and vice versa, just by replacing the approximation functions and their derivative matrices.

As an advantage of the PN �PN�2 method, no boundary conditions for the pressure are required which

could possibly produce non-physical spurious modes.

For the time discretization, we use an Adams–Bashforth backward–Euler scheme. This scheme is sec-

ond-order accurate in time for the velocities and the pressure [7,28]. The efficiency of this method has been

demonstrated by Botella [7]. The time-integration scheme splits one time step into a prediction step for the

intermediate velocity field �u
3�unþ1 � 4un þ un�1

2Dt
� D�unþ1 þrpn þ 2un � run � un�1 � run�1 ¼ fnþ1; ð12aÞ

�unþ1joV ¼ gnþ1 ð12bÞ

and a projection step
3

2

unþ1 � �unþ1

Dt
þr pnþ1 � pn

� �
¼ fnþ1 � n; ð13aÞ

r � unþ1 ¼ 0; ð13bÞ

unþ1 � njoV ¼ gnþ1 � n: ð13cÞ
Initially, for the first time step (n = 0), the velocity and the pressure are set to u�1 = u0 and p0 = 0, and Dt is
replaced by 3Dt/2. These initial conditions reduce (12a)–(13c) to first order. However, the second-order

accuracy is preserved for all following time steps.

The equations for the prediction step are solved by a direct Helmholtz solver [25,26]. The solution of the

projection step is obtained using the Uzawa method [37] which leads to a Poisson-like equation which is

also solved by the direct Helmholtz solver. The constant-pressure mode which leads to a singularity during

the solution procedure is filtered using the method of Phillips and Roberts [38].

3.2. Treatment of the edge and corner singularities

Along the edges between the moving and the stationary walls of the cavity the flow fields are singular. On

the edges (x, y) = (�C/2, ±1/2) which are perpendicular to the direction of the wall motion both the vor-

ticity and the pressure diverge, whereas on the edges parallel to the direction of the wall motion (x,

z) = (�C/2, ±K/2) only the vorticity diverges. These latter singularities only arise for rigid end-wall condi-

tions. The problem is even further complicated by the presence of three-dimensional corners where two

singular edges meet.

Such singularities can severely degrade the convergence of any spectral method. As a remedy, one could
make use of a function uc which is identical to the local asymptotic solutions at all singular edges and cor-

ners. If a function uc can be constructed such that the residuum u* = u � uc is smooth and finite everywhere
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on the boundary of the domain, then the problem could be solved very efficiently. In the lid-driven cavity

problem, the natural building blocks for the function uc are local asymptotic solutions for a single infinite

wedge [47,35,24,27] and the three-dimensional local asymptotic solution for the flow in the quadrant of a

three-dimensional rectangular corner formed by two stationary walls and one wall sliding parallel to one of

the edges [21].
To understand the convergence rate of u* in more detail we must consider the error, or residuum, of

magnitude OðN�cÞ for the Chebyshev-spectral method, where N is the number of unknowns and c a coef-

ficient which is related to the regularity of the solution. Bottela and Peyret [9] have evaluated the exponent c
theoretically and numerically for several test problems, using different norms. For the two-dimensional

asymptotic solution u = raf(h) for a singular edge, where r and h are polar-coordinates centered on the edge,

they found c = 2a + 1 when using a L2
x-norm (see Section 5.1). The power a of r of the most singular term

determines the convergence of the numerical solution.

Let us first consider the two-dimensional cavity problem (K ! 1). Then the asymptotic solutions near
the four corners A = (�C/2, �1/2), B = (�C/2, 1/2), C = (C/2, 1/2), and D = (C/2, �1/2) can be written in

form of a power series uðiÞ ¼
P1

j¼1r
aðiÞj f

ðiÞ
j ðhÞ, where i 2 {A, B, C, D} is the index of the corner. It is useful

to sort the powers aðiÞj for a given corner i in an ascending order of the real part 0 6 RðaðiÞ1 Þ 6 RðaðiÞ2 Þ 6 � � �.
For the rigid corners C and D, the exponent of the leading-order term is RðaðC;DÞ1 Þ � 2:74 [35]. However, the

most dangerous contributions result from the two singular corners A and B for which aðA;BÞj ¼ j� 1 [24]. If

we now construct uc as the sum of the two leading-order terms of both asymptotic solutions for the singular

corners, the residuum u� scales like � ra
ðA;BÞ
3 ¼ r2 as the corners A and B are approached. Hence, the con-

vergence-rate exponent for the residuum becomes c ¼ 2aðA;BÞ3 þ 1 ¼ 5. The corresponding convergence rate

� OðN�5Þ has been confirmed numerically by Bottela [7] and Bottela and Peyret [9].
In three dimensions, the construction of the function uc is not so obvious. However, in the case of peri-

odic boundary conditions a superposition of the two asymptotic edge solutions for A = (�C/2, �1/2, z) and

B = (�C/2, 1/2, z) is possible, as for the two-dimensional flow, and the singularity in the boundary condi-

tion for the residuum u* is reduced. Here, we shall employ the second-order approximation to the edge

problem by Hancock et al. [27] and Gupta et al. [24] which also includes the leading-order inertia term.

According to Botella and Peyret [9] one expects a reduction of the error like OðN�5Þ, as in the two-dimen-

sional case. For the practical implementation, the three-dimensional solution of the cavity-flow problem

(1a, b) is written as [8]
u ¼ u�ðx; y; zÞ þ ucðx; yÞ ¼ u� þ
X

m�fA;Bg;n�f1;2g
um;ðnÞc ; ð14aÞ

p ¼ p�ðx; y; zÞ þ pcðx; yÞ ¼ p� þ
X

m�fA;Bg;n�f1;2g
pm;ðnÞc ; ð14bÞ
where the asymptotic solutions ðum;ðnÞc ; pm;ðnÞc Þ of order n for the edges m 2 {A, B} satisfy the equations
r � um;ð1Þc ¼ 0; ð15aÞ

�rpm;ð1Þc þ Dum;ð1Þc ¼ 0; ð15bÞ

r � um;ð2Þc ¼ 0; ð15cÞ

�rpm;ð2Þc þ Dum;ð2Þc ¼ um;ð1Þc � rum;ð1Þc ; ð15dÞ
subject to the conditions um;ð1Þc ¼ Re ey on x = �C/2 and um;ð1Þc ¼ 0 on the respective other boundary. um;ð2Þc

must satisfy homogeneous boundary conditions. By inserting this ansatz into the Navier–Stokes equations

(1a) and (1b) we obtain
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o

ot
u� þ u� � ruc þ uc � ru� þ u� � ru� þN uc; ucð Þ ¼ �rp� þ r2u�; ð16aÞ

r � u� ¼ 0; ð16bÞ

with
N uc; ucð Þ ¼ uð1Þc � ruð2Þc þ uð2Þc � r uð1Þc þ uð2Þc

� �
þ uB;ð1Þc � ruA;ð1Þc þ uA;ð1Þc � ruB;ð1Þc ; ð17aÞ

uð1Þc ¼
X

m�fA;Bg
um;ð1Þc ; ð17bÞ

uð2Þc ¼
X

m�fA;Bg
um;ð2Þc : ð17cÞ
The boundary conditions in x- and y-directions for the residuum u* are
u� ¼ Re ey � uc on x ¼ �C=2; ð18aÞ

u� ¼ �uc on y ¼ �1=2: ð18bÞ

For periodic boundary conditions (7) remains unaltered. By subtracting the asymptotic edge solutions addi-

tional nonlinear terms are introduced in the time-integration scheme (12a)–(13c). It is now used to solve for

u* and p*. It will be shown below that the convergence and the accuracy is significantly improved, as com-

pared to a direct solution of (u, p).

Let us now consider the three-dimensional case with rigid end-wall condition. At first sight, it is tempting

to superpose four solutions of Gomilko et al. [21] for the four corners and four edges to construct uc. A

superposition with weighting factor 1, however, introduces new singularities which are not present in the

original cavity-flow problem. Consider, for example, a superposition of the two local asymptotic solutions
for the two upstream corners (x, y, z) = (�C/2, �1/2, ±K/2) of the moving lid. Then the singular edges (x, z)

= (�C/2, ±K/2) along both end-walls are properly captured, but along the common edge (x, y) = (�C/2,�1/2)

of both upstream corners the singularity is taken care of twice! When the remaining two local asymptotic

corner-flow solutions of both downstream corners (x, y, z) = (�C/2, 1/2, ±K/2) are added, also both edges

(x, z) = (�C/2, ±K/2) along the moving plate with tangential singularities are taken care of twice. Hence, a

superposition of the asymptotic corner solutions of the four singular corners (x, y, z) = (�C/2, ±1/2, ±K/2)
with weighting factor 1/2 would remove all singularities on the edges of the cavity. However, the residual

flow u* on the rigid end-walls is singular as any corner is approached in the plane of each end-wall: For a
given end-wall, there is no contribution to the residual u* from the two asymptotic solutions of the two cor-

ners which have a plane in common with that end-wall. However, the contributions from the asymptotic

solutions of the distant corners to the residual become singular as one of the corners of the end-wall under

consideration is approached in the plane of that end-wall. From these considerations, we conclude that the

singularities in the boundary conditions cannot be fully removed by subtracting one half of the asymptotic

solutions for the four singular corners. We have not, however, investigated the effect of the remaining sin-

gularity on the convergence.

In view of these difficulties, we applied the two-dimensional asymptotic solutions of Hancock et al. [27]
and Gupta et al. [24] also in the case of rigid end-walls. Compared to the previous case of periodic bound-

ary conditions we have to modify the boundary conditions on the end-walls to
u� ¼ �uc on z ¼ �K=2: ð19Þ

However, the two edges at (x, z) = (�C/2, ±K/2) between the moving wall and the end-walls remain singu-

lar. As will be shown later, the effect of these weaker singularities remains confined to regions near both

end-walls and does not degrade the convergence in the bulk.
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4. Code validation

As the first step, we validate the code by comparing our results for the usual two-dimensional flow (w = o/

oz = 0) with those of Bottela and Peyret [8]. The calculations are performed for the square cavity with C = 1

and for Re = 1000. The initial conditions for the calculations on the coarsest grid were u = p = 0. For all
finer grids, the initial conditions were obtained by interpolating the converged result for a given grid onto

the next finer grid.

For all span aspect ratios K, the flow for t! 1 was found to be steady. This is consistent with exper-

imental evidence, as no two-dimensional oscillatory flow has ever been observed. As a criterion for the con-

vergence to the steady time-asymptotic flow, we used the condition
Table

Minim

N = N

N

48

48�

64

64�

96

96�

128

128�

The R
max
x;y;z;i

juiðx; tÞ � uiðx; t � DtÞj

DtjRej < �: ð20Þ
As soon as this condition was satisfied the time-integration was terminated and the flow field obtained was

considered steady. For all calculations, we used � = 10�7, if not specified otherwise.

All results of Bottela and Peyret [8], those including and those excluding the asymptotic corner solutions,

could be reproduced to the given accuracy. As examples, the extremal velocities on the centerlines of the

cavity are listed in Table 1 as functions of the resolution. The calculations were performed including the

asymptotic corner solutions. Some remaining differences in the last significant digit result from the detec-

tion method of the location of the velocity extrema. Since we have used Newton�s method, the extrema loca-
tions could be computed much more accurately (Dx < 10�4) than by Bottela and Peyret [8].

To validate our three-dimensional code, we compared our results with those of Ku et al. [32]. They cal-

culated the flow in a cubic cavity (C = K = 1) with rigid end-walls for Re = 100, 400, and 1000. Fig. 2 shows

the velocity profiles along the centerlines (x, 0, 0) and (0, y, 0). The calculations were made by subtracting

the two asymptotic edge solutions. Our data are in good agreement with the results of Ku et al. [32], even

when using a low resolution. It will be shown in the next section that the extremal velocities on the center-

lines obtained for the low resolution used for Fig. 2 differ less than 1% from the fully converged solution on

a very fine grid.
The second comparison of three-dimensional flows is made for a cavity with C = 2 and K = 1 which was

considered by Cortes and Miller [13]. In Fig. 3, the velocity profile v(x, 0, 0) on the x-axis is shown for sev-

eral Reynolds numbers. For Re 6 400, our results (solid and dotted lines) are in very good agreement with

those of Cortes and Miller [13] (indicated by symbols). However, for Re = 1000 both the magnitude and the

location of the velocity minimum differ. This difference is substantial, since the velocity profile does not

change visibly on the scale of Fig. 3 when increasing the resolution (see Fig. 7).
1

um and maximum velocities on the centerlines of the two-dimensional square cavity (C = 1) for different resolutions

x = Ny

minxv(x,0) x maxyu(0,y) y minyu(0,y) y

�388.5271 0.3283 527.0170 0.4092 �376.8991 �0.3422

�388.5271 0.3283 527.0168 0.4092 �376.8991 �0.3422

�388.5695 0.3283 527.0764 0.4092 �376.9440 �0.3422

�388.5695 0.3283 527.0763 0.4092 �376.9439 �0.3422

�388.5698 0.3283 527.0773 0.4092 �376.9447 �0.3422

�388.5698 0.3283 527.0771 0.4092 �376.9447 �0.3422

�388.5698 0.3283 527.0773 0.4092 �376.9447 �0.3422

�388.5698 0.3283 527.0771 0.4092 �376.9447 �0.3422

eynolds number is Re = 1000. The values of Bottela [7] are marked with a dagger �.



Fig. 2. Normal velocities on the centerlines (x, 0, 0) and (0, y, 0) in the cubic cavity for C = K = 1 using a resolution

Nx · Ny · Nz = 32 · 32 · 24. The Reynolds numbers are Re = 100 (dashed line), Re = 400 (dotted line), and Re = 1000 (solid line). The

symbols n (Re = 100), h (Re = 400), and e (Re = 1000) represent the results of Ku et al. [32], extracted from their figures.

Fig. 3. Velocity profiles v(x, 0, 0) for C = 2. The Reynolds numbers are Re = 100 (solid line, e), Re = 400 (dotted line, h) and

Re = 1000 (dashed line, D). Symbols indicate the results of Cortes and Miller [13]. The resolution of the present calculation is

Nx · Ny · Nz = 32 · 24 · 16.
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The third comparison is made with results of Guermond et al. [23]. They have investigated the start-up

flow in a rectangular cavity (C = 1) with a span aspect ratio K = 2 for Re = 1000 when the speed of the lid is

increased suddenly from zero to its final value. We compare the time evolution of the velocity components

u(t) and v(t) monitored at the six points (0, y1,2, zi) and (x1, 0, zi) for i = 1, 2. The coordinates y1,2 and x1 are

selected to be close to the locations where u and v on the centerlines (0, y, 0) and (x, 0, 0) take their extrema.

In Fig. 4(a) and (b), these velocities are plotted as functions of time in the planes z1 = 0 (a) and z2 = 0.75 (b).

The present results, shown as lines, agree very well with the calculations of Guermond et al. [23] (symbols).

As a last validation, we make a comparison with the results of Albensoeder et al. [2]. By a linear stability
analysis, they have calculated the critical parameters for the first instability of the two-dimensional flow in

the lid-driven cavity with infinite span (K ! 1) as a function of the aspect ratio C. They predicted the first

instability in an infinitely long cavity to consist of three-dimensional Taylor–Görtler vortices. We carried



Fig. 4. Velocities u(x1) (solid line, e), u(x2) (dotted line, h), and v(x3) (dashed line, D) as functions of time t for Re = 1000, C = 1, and

K = 2. The velocities are monitored at x1 = (0,0.40908, z), x2 = (0, �0.27777, z), and x3 = (0, �0.29797, z) with z1 = 0 (a) and z2 = 0.75

(b). The resolution is Nx · Ny · Nz = 32 · 32 · 32. Symbols indicate the results of Guermond et al. [23].
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out simulations for C = 1 and periodic boundary conditions using different resolutions

(Nx · Ny · Nz = 30 · 30 · 19 and Nx · Ny · Nz = 42 · 42 · 25). The aspect ratio K, i.e., the period in span-

wise direction, was set to K = 2p/kc = 0.407, where kc = 15.43 is the critical wavenumber predicted by

Albensoeder et al. [2]. To determine the onset of the three-dimensional flow, the Reynolds number was de-

creased quasi-statically using decrements of dRe = 1 until the Taylor–Görtler vortices vanished, leaving a
pure two-dimensional flow. The three-dimensional flow was observed to diminish continuously with Re

and vanished completely at Re = 783 ± 1 for both resolutions. This value matches very well with the critical

Reynolds number Rec = 786.3 ± 6 predicted by Albensoeder et al. [2].

In the next section, we shall prove the good convergence properties of the method. It will be demon-

strated that the moderate resolutions used for the preceding validations are very close to the resolution

for which the solution is fully converged, i.e., for which the error is less than du/Re < 10�5.
5. Benchmark data for Re = 1000

It is well known that the geometry has a strong influence on the flow. For this reason, we shall provide

benchmark data for Re = 1000 and the aspect ratios (C, K) = (1, 1), (1, 2), (1, 3), and (2, 1) which are com-

monly used in experiments and numerics. Most calculations have been performed for no-slip end-wall con-

ditions. In addition, results for periodic boundary conditions will be provided for the cubic cavity (C,
K) = (1, 1). The flow was found to be steady in all cases considered.

5.1. No-slip end-walls

In the previous section, the velocities on the centerlines of a cubical cavity were presented for a moderate

resolution. To illustrate the grid convergence the maximum velocity maxyu(0, y, 0) on the vertical centerline

is plotted as a function of the resolution N = Nx = Ny in Fig. 5 for a square cross-section C = 1 and several

span aspect ratios K. Velocity values are provided for both approaches, direct calculations without making

use of the asymptotic edge-flow solutions (connecting lines between symbols are dotted), and calculations

including the asymptotic edge-flow solutions (lines are full, dashed or dash-dotted). The resolutions Nz in
z-direction corresponding to N are provided in Tables 2–4. All velocity extrema were computed by

Newton�s method.



Fig. 5. Maximum maxyu(0, y, 0) as function of the resolution N = Nx = Ny for Re = 1000, C = 1 and K = 1 (solid line), K = 2 (dash-

dotted line), and K = 3 (dashed line) when the asymptotic edge-flow solution is utilized. Symbols e, h, and D indicate the convergence

without employing the asymptotic solutions. The corresponding resolution in z-direction is listed in Tables 2–4.

Table 2

Minimum and maximum velocities on the centerlines (x, 0, 0) and (0, y, 0) for C = K = 1 and Re = 1000 in dependence of the number of

grid points for calculations including the asymptotic solutions

Nx · Ny · Nz maxyu y minyu y minxv x

24 · 24 · 16 447.5908 0.4107 �252.8331 �0.3895 �287.8303 0.3753

26 · 26 · 18 443.2833 0.4097 �251.1739 �0.3945 �287.1292 0.3757

28 · 28 · 20 442.2136 0.4102 �252.5244 �0.3928 �285.6441 0.3768

30 · 30 · 22 439.7417 0.4099 �249.4673 �0.3897 �283.9487 0.3763

32 · 32 · 24 437.8115 0.4097 �248.3688 �0.3919 �282.4369 0.3761

34 · 34 · 26 436.3667 0.4096 �247.6508 �0.3913 �281.4070 0.3759

36 · 36 · 26 435.6872 0.4096 �247.1098 �0.3908 �280.8462 0.3759

48 · 48 · 32 434.9667 0.4096 �246.6312 �0.3909 �280.3480 0.3758

64 · 64 · 48 435.0177 0.4096 �246.6517 �0.3909 �280.3830 0.3758

96 · 96 · 64 435.0186 0.4096 �246.6511 �0.3909 �280.3833 0.3758

Table 3

Minimum and maximum velocities on the centerlines (x, 0, 0) and (0, y, 0) for Re = 1000, C = 1, and K = 2 in dependence of the

number of grid points for calculations including the asymptotic solutions

Nx · Ny · Nz maxyu y minyu y minxv x

28 · 28 · 28 479.6984 0.4116 �299.7853 �0.3597 �324.7577 0.3683

30 · 30 · 30 477.7744 0.4108 �296.9597 �0.3636 �323.7770 0.3707

32 · 32 · 32 476.5096 0.4106 �295.3656 �0.3617 �322.3326 0.3706

34 · 34 · 34 475.2217 0.4107 �294.7815 �0.3601 �321.0739 0.3700

36 · 36 · 36 474.3428 0.4108 �294.5013 �0.3595 �320.3122 0.3696

48 · 48 · 48 473.5296 0.4108 �294.0667 �0.3588 �319.7264 0.3694

64 · 64 · 64 473.5843 0.4108 �294.0967 �0.3588 �319.7648 0.3694

96 · 96 · 96 473.5850 0.4108 �294.0967 �0.3588 �319.7651 0.3694
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From Fig. 5, we can conclude that the inclusion into the ansatz of the asymptotic analytical solutions for

the two-dimensional edge flows leads to an improved convergence (full, dashed, and dash-dotted lines),

although the two edges (�1/2, y, ±K/2) between the moving plate and the rigid walls at z =±K/2 remain



Table 4

Minimum and maximum velocities on the centerlines (x, 0, 0) and (0, y, 0) for Re = 1000, C = 1, and K = 3 in dependence of the

number of grid points for calculations including the asymptotic solutions

Nx · Ny · Nz maxyu y minyu y minxv x

26 · 26 · 26 495.4298 0.4103 �328.3674 �0.3677 �351.0431 0.3580

28 · 28 · 28 498.3751 0.4097 �329.8616 �0.3828 �350.4184 0.3655

30 · 30 · 30 493.7083 0.4100 �327.1414 �0.3749 �347.7627 0.3629

32 · 32 · 32 493.4983 0.4096 �325.4250 �0.3778 �346.7478 0.3641

34 · 34 · 34 490.9682 0.4097 �324.6165 �0.3759 �345.4581 0.3628

36 · 36 · 36 491.0394 0.4097 �324.1757 �0.3768 �345.0945 0.3634

48 · 48 · 48 490.1092 0.4097 �323.5094 �0.3763 �344.4298 0.3633

64 · 64 · 64 490.1732 0.4097 �323.5474 �0.3763 �344.4592 0.3633

96 · 96 · 96 490.1725 0.4097 �323.5474 �0.3763 �344.4587 0.3633
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singular. The acceleration of the convergence applies to all span aspect ratios considered (K = 1, 2, 3). It can

be inferred from Tables 2–4 that the extrema of the other velocity components experience a similar

improvement of the convergence rate. We did not explicitly tabulate the results obtained without subtract-

ing the asymptotic solutions. A comparison of the numerical data from Tables 2–4 for the highest resolu-

tions with those of half the resolution shows that the accuracy of the extremal velocities on the centerlines

for the highest resolution is much better than du/Re < 10�5. For future reference we also provide in Tables 5

and 6 the velocity values on the horizontal and vertical centerlines.

To check the global convergence, we employ the L2
x-norm of the velocity error
L2
xðuÞ ¼

1

Re
ku� urefk2L2x þ kv� vrefk2L2x þ kw� wrefk2L2x
� �1=2

; ð21Þ
where ku� urefkL2x , e.g., is defined by
ku� urefkL2x ¼
Z
X
uðxÞ � urefðxÞj j2nðxÞ dx

� �1=2

ð22Þ
with X = [�C/2, C/2] · [�0.5, 0.5] · [�K/2, K/2] and the Chebyshev weight
nðxÞ ¼ 1� 2

C
x

� �2
" #

1� 2yð Þ2
h i

1� 2

K
z

� �2
" #( )�1=2

: ð23Þ
The integrals like (22) were approximated by the Gauss–Lobatto formula for which the flow was interpo-

lated on a Gauss–Lobatto grid of size M · M · M. In this case, we choose M = 250. The reference velocity

uref is taken as the result obtained using the highest resolution (K = 1: Nx · Ny · Nz = 96 · 96 · 64, K = 2, 3:
Nx · Ny · Nz = 96 · 96 · 96). In Fig. 6(a), the L2

x-norm is plotted as a function of the grid size N = Nx = Ny

(for Nz see Tables 2–4) for the span aspect ratios K = 1, K = 2, and K = 3. It can be seen that the global con-

vergence is not as good as the point-wise convergence, as discussed before. We find that the L2
x-error scales

like N�1.4 and N�1.5 for calculations including, the asymptotic solutions into and excluding them from the

ansatz, respectively. The obtained convergence rates are significantly lower than the rate N�5.1 at which the

two-dimensional calculations of Bottela [7] converge when the edge singularities are taken into account.

To better understand the convergence rate of the L2
x-norm, we assume that the analysis of Botella and

Peyret [9] for the two-dimensional flow, briefly summarized in Section 3.2, can also be applied to the three-
dimensional case with rigid end-walls. Using spherical polar coordinates (r, h, /) centered at one of the sin-

gular corners i 2 {A, B, C, D} between the moving and two stationary walls and located at (x, y, z) = (�C/2,
±1/2, ±K/2), the leading-order term of the asymptotic series solution of the corner flow can be written as

u
ðiÞ
1 ¼ ra

ðiÞ
1 f

ðiÞ
1 ðh;/Þ. According to Gomilko et al. [21], the exponent of this leading-order term is aðiÞ1 ¼ 0.



Table 5

Velocity v and pressure p on the x-axis (x, 0, 0) for Re = 1000 and C = 1

x Rigid boundary conditions Periodic boundary conditions

K = 1 (96 · 96 · 64) K = 2 (96 · 96 · 96) K = 3 (96 · 96 · 96) K = 1 (96 · 96 · 65)

v/Re p/Re2 v/Re p/Re2 v/Re p/Re2 v/Re p/Re2 v/Re p/Re2

�0.5000 1.0000000 0.008645 1.0000000 0.020067 1.0000000 0.020722 1.0000000 0.044676 1.0000000 0.041666

�0.4766 0.5896414 0.007985 0.6081626 0.019151 0.6366360 0.019972 0.5992648 0.043278 0.6692592 0.041548

�0.4688 0.4844275 0.007755 0.5111673 0.018791 0.5453499 0.019636 0.5029417 0.042746 0.5822494 0.041329

�0.4609 0.3982086 0.007531 0.4352362 0.018419 0.4730371 0.019273 0.4310361 0.042190 0.5098953 0.041030

�0.4531 0.3317110 0.007322 0.3800975 0.018048 0.4197163 0.018899 0.3823946 0.041627 0.4532512 0.040668

�0.3516 0.1218293 0.005161 0.2124395 0.011821 0.2368726 0.011810 0.2850062 0.030148 0.2969424 0.029833

�0.2344 0.0733444 0.002575 0.1037698 0.004462 0.1103051 0.003305 0.1753694 0.010931 0.1711830 0.011051

�0.1172 0.0390483 0.000676 0.0333083 0.000796 0.0270859 �0.000415 0.0550436 �0.000189 0.0588776 0.000002

0.0000 0.0080177 0.000000 �0.0129662 0.000000 �0.0325844 0.000000 �0.0474572 0.000000 �0.0474130 �0.000105

0.0469 �0.0061192 0.000125 �0.0305044 0.000402 �0.0557138 0.001222 �0.0861502 0.003326 �0.0896886 0.003090

0.2187 �0.1099894 0.004171 �0.1385097 0.007472 �0.1775706 0.013128 �0.2277646 0.030482 �0.2607131 0.030750

0.3281 �0.2516006 0.016181 �0.2937825 0.025856 �0.3247462 0.035607 �0.3435525 0.060394 �0.3243194 0.064798

0.3984 �0.2729293 0.027919 �0.3054909 0.042697 �0.3223165 0.054662 �0.3518084 0.078688 �0.1937646 0.078983

0.4297 �0.2369550 0.031509 �0.2586761 0.047504 �0.2681329 0.059966 �0.3133212 0.084802 �0.1444237 0.082238

0.4375 �0.2228255 0.032121 �0.2418095 0.048304 �0.2500846 0.060842 �0.2976668 0.086044 �0.1326928 0.082837

0.4453 �0.2062332 0.032616 �0.2225479 0.048948 �0.2299980 0.061548 �0.2786265 0.087135 �0.1205861 0.083329

0.5000 0.0000000 0.033402 0.0000000 0.050114 0.0000000 0.062909 0.0000000 0.090742 0.0000000 0.083463

The results for periodic boundary conditions are listed for the two different planes z0: = 0 (left two columns) and z1 = z0 + K/6 = 1/6 where w = 0 (two rightmost

columns).
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Table 6

Velocity u and pressure p on the y-axis (0, y, 0) for Re = 1000 and C = 1

y Rigid boundary conditions Periodic bou ary conditions

K = 1 (96 · 96 · 64) K = 2 (96 · 96 · 96) K = 3 (96 · 96 · 96) K = 1 (96 · 65)

u/Re p/Re2 u/Re p/Re2 u/Re p/Re2 u/Re p/Re2 u/Re p/Re2

0.5000 0.0000000 0.016579 0.0000000 0.029586 0.0000000 0.038752 0.0000000 0.059901 0.0000000 0.059339

0.4688 0.1886420 0.017524 0.2103534 0.030661 0.2123895 0.039937 0.2093464 0.061189 0.2116072 0.060555

0.4609 0.2409470 0.017543 0.2685775 0.030622 0.2727182 0.039886 0.2697260 0.061164 0.2709983 0.060409

0.4531 0.2903172 0.017395 0.3229981 0.030348 0.3294425 0.039566 0.3273820 0.060861 0.3256542 0.059923

0.4453 0.3351117 0.017045 0.3716805 0.029799 0.3804404 0.038926 0.3805818 0.060220 0.3730932 0.059039

0.4063 0.4342302 0.012298 0.4720530 0.023183 0.4893166 0.031157 0.5241776 0.051727 0.4493780 0.049489

0.3594 0.3111715 0.005326 0.3472198 0.013879 0.3752690 0.019871 0.4488558 0.037214 0.3433904 0.036685

0.3047 0.1522299 0.001560 0.2042160 0.008105 0.2420601 0.012018 0.3097281 0.025039 0.2620630 0.026029

0.0000 �0.0367355 0.000000 0.0006955 0.000000 �0.0096889 0.000000 �0.0309846 0.000000 �0.0287666 �0.000105

�0.2656 �0.1698661 0.008512 �0.2378601 0.013386 �0.2263912 0.015064 �0.2889870 0.037437 �0.3199535 0.037979

�0.2734 �0.1758025 0.008976 �0.2461943 0.014487 �0.2363559 0.016183 �0.2927245 0.039189 �0.3252668 0.040065

�0.3437 �0.2292360 0.014044 �0.2924917 0.025245 �0.3120431 0.028294 �0.3058621 0.052408 �0.2798443 0.053461

�0.4062 �0.2440743 0.018959 �0.2773856 0.033133 �0.3125534 0.038760 �0.3028215 0.060587 �0.2337254 0.059340

�0.4219 �0.2350273 0.019929 �0.2627359 0.034518 �0.2969139 0.040643 �0.3018496 0.062729 �0.2186192 0.061021

�0.4297 �0.2274623 0.020337 �0.2528278 0.035096 �0.2859568 0.041419 �0.3003886 0.063779 �0.2091965 0.061792

�0.4375 �0.2173841 0.020691 �0.2405949 0.035596 �0.2723632 0.042083 �0.2970567 0.064784 �0.1980795 0.062467

�0.5000 0.0000000 0.021761 0.0000000 0.037086 0.0000000 0.043698 0.0000000 0.068843 0.0000000 0.062829

The results for periodic boundary conditions are listed for the two different planes z0: = 0 (two left columns) and z z0 + K/6 = 1/6 where w = 0 (two rightmost

columns).
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Fig. 6. (a) L2
x-norm of the error as function of the grid size for N = Nx = Ny for different runs including (lines) and excluding (symbols)

the asymptotic solution in the ansatz. Symbols and lines denote the following span aspect ratios. Full line, h: K = 1; dashed line, e:

K = 2; and dash-dotted line, D: K = 3. The interpolation grid size for the integration isM = 250. (b) Same as (a), but restricted to the (x,

y)-plane z = 0 with Xz = 0 = [�C/2, C/2] · [�0.5, 0.5]. The dotted lines indicate the asymptotic power laws.

Fig. 7. Velocity profiles v(x, 0, 0) (solid line), u(�0.5, y, 0) (dotted line), u(0, y, 0) (dashed line), and u(0.5, y, 0) (dash-dotted line)

normalized by Re = 1000 for C = 2 and K = 1 with Nx · Ny · Nz = 96 · 96 · 96. The symbols h indicate the results of Cortes and

Miller [13] extracted from their figures. To indicate convergence the symbols + and · denotes the results for

Nx · Ny · Nz = 32 · 24 · 16 and Nx · Ny · Nz = 48 · 32 · 32, respectively.
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Keeping in mind that the singularities along the edges between the moving wall and the end-walls are not

removed by our present approach one would expected c � 2aðiÞ1 þ 1 ¼ 1 to be a first approximation to the

numerical error. Our calculations yield c = 1.4 and c = 1.5 for the both cases. This result seems to confirm

the approach of Botella and Peyret [9], even though the exponent c of the convergence rate obtained here

for the three-dimensional case is about 50% larger than expected. This conclusion is also supported by the

fact that the convergence rate is practically independent of whether the asymptotic solutions are subtracted

or not.

The convergence of the numerical solution is much better, however, in the interior of the 3D cavity than
close to the end-walls at z = ±K/2, each containing a weakly singular edge. This can be seen from Fig. 6(b)

in which the L2
x-norm of the error restricted to the (x, y)-plane z = 0 (i.e., Xz = 0 = [�C/2, C/2] · [�0.5, 0.5])

is plotted as a function of N = Nx = Ny. It decreases approximately like N�5.5. This must be compared with



Fig. 8. Velocity profiles w(0, 0, z) for K = 1 (solid line), K = 2 (dotted line), and K = 3 with Re = 1000 and C = 2. The resolution is

96 · 96 · 64 for K = 1 and 96 · 96 · 96 for K = 2,3.
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the weak convergence �N�1.1 of the L2
x-norm restricted to the (x, y)-plane when the asymptotic solutions

are not taken into account (symbols is Fig. 6(b)).

Fig. 8 shows the accurate axial velocity w(0, 0, z) of the vortex flow in the cavity for three different span
aspect ratios K. Owing to the no-slip conditions on z = ±K/2 secondary flows are induced. The correspond-

ing Bödewadt layers at z = ±K/2 are clearly exhibited, even for K = 1. While the axial velocity of the

self-similar solution of Bödewadt [6] approaches a finite value far away from the rigid end-wall, the axial

velocity exhibits, apart from slight oscillations, a linear profile in central region of the cavity. The slope of

the profile is correlated with the strength of the Bödewadt pumping at the rigid walls, hence the curves for

different aspect ratios approximately fall onto each other when scaling of the cavity depth by K, as in Fig. 8.

Also visible is a weak and damped spatial oscillation of the axial velocity. This feature is in common with

Bödewadt�s similarity solution, albeit the spatial frequency is modified to some degree owing to the finite
aspect ratio K < 1.

The most obvious advantage of the inclusion of the asymptotic edge-flow solution into the ansatz is the

significantly reduced error for low resolutions, as compared to calculations without the use of the asymp-

totic solutions. This behavior justifies the use of the relatively low resolutions for the validations in Section

4. If, however, the resolution is too low, the use of the asymptotic edge-flow solutions may lead to numer-

ical instability of the time-integration, while the conventional method remains stable. Such a behavior was

observed, e.g., for K = 2 and N = 26.

Finally, we consider no-slip end-wall boundary conditions for a cavity with C = 2 and K = 1. As men-
tioned in Section 4, our results deviate from those of Cortes and Miller [13] (see Fig. 3). An update of

the velocity profile on the horizontal centerline using a resolution of N = Nx = Ny = Nz = 96 is given in

Fig. 7. In addition, the vertical velocity profiles v(±0.5, y, 0) and v(0, y, 0) are included into the graph.

To illustrate convergence the numerical results for two different lower resolutions, indicated by the symbols

+ and ·, are overlayed in the plot. Selected numerical velocity values of these profiles are given in Table 7.

5.2. Periodic boundary conditions

As an example for periodic boundary conditions at z = ±K/2, we consider the flow in a cubic unit cell,

i.e., C = K = 1. Albensoeder et al. [2] have shown that the steady two-dimensional flow in a cavity with a

square cross-section becomes unstable to steady short-wavelength Taylor–Görtler vortices when the system

is unbounded in z-direction (K! 1). The critical parameters are Rec = 786.3 ± 6 and kc = 15.43 ± 0.06. By



Table 7

Velocity components v and u and the pressure p on the x- and y-axes (x, 0, 0) and (0, y, 0), respectively

x y = 0 y x = �0.5 x = 0 x = 0.5

v/Re p/Re2 u/Re p/Re2 u/Re p/Re2 u/Re p/Re2

�1.00 1.000000 �0.013616 �0.50 0.000000 �0.013082 0.000000 0.027151 0.000000 0.009825

�0.97 0.470716 �0.014570 �0.46 �0.143892 �0.012960 �0.033922 0.025846 0.041546 0.010005

�0.95 0.273838 �0.015147 �0.41 �0.226613 �0.013521 �0.047906 0.023217 0.076012 0.009916

�0.90 0.130246 �0.016258 �0.36 �0.218455 �0.014703 �0.051561 0.018880 0.078266 0.009415

�0.80 0.092321 �0.018363 �0.30 �0.182022 �0.016219 �0.047193 0.012986 0.053258 0.008712

�0.50 0.038041 �0.023045 �0.16 �0.118605 �0.019769 �0.011378 0.002622 �0.000386 0.008300

�0.25 �0.042939 �0.020951 �0.07 �0.086136 �0.021883 0.026312 �0.000081 �0.015658 0.008587

�0.10 �0.184269 �0.012106 0.00 �0.060967 �0.023045 0.062110 0.000000 �0.022291 0.008850

0.00 �0.250511 0.000000 0.10 �0.023179 �0.023847 0.110966 0.003167 �0.027906 0.009172

0.10 �0.165149 0.007777 0.20 0.022083 �0.023769 0.115483 0.007470 �0.030658 0.009418

0.20 �0.057754 0.008974 0.30 0.124992 �0.022675 0.051995 0.008953 �0.029947 0.009595

0.50 0.008249 0.008850 0.40 0.428282 �0.016489 �0.007772 0.008527 �0.022182 0.009699

0.75 0.034290 0.009837 0.45 0.324198 �0.012621 �0.014091 0.008363 �0.013421 0.009732

1.00 0.000000 0.010163 0.50 0.000000 �0.013291 0.000000 0.008358 0.000000 0.009768

The parameters are Re = 1000, C = 2 and K = 1. The resolution is Nx · Ny · Nz = 96 · 96 · 96.
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restricting the periodicity to K = 1 the Taylor–Görtler vortices bifurcate out of the basic flow at

ReK¼1
c ¼ 828:5� 1, and a flow state with three Taylor–Görtler vortex pairs with wavelength

kK¼1
c ¼ 1=3 ðkK¼1

c ¼ 6p ¼ 18:85Þ is critical. It turns out that these steady Taylor–Görtler vortices are robust

and remain stable at Re = 1000, dominating the whole flow structure.

To analyze the flow field, we decompose the dependence on z of each velocity component into Fourier

modes am(x, y)e
imkz. The real amplitudes are then given by Am(x, y) = |am(x, y)|. To demonstrate the con-

vergence, the maxima with respect to x and y of the amplitudes of the velocity components of the Fourier

mode m = 3 are plotted as functions of the resolution N = Nx = Ny in Fig. 9. The corresponding resolution
Nz in z-direction is provided in Table 8. Similar as for no-slip boundary conditions the use of the asymptotic
Fig. 9. Amplitude maxx, yAm = 3 of the velocity components u (solid line), v (dashed line), and w (dash-dotted line) in the periodic cube

(C = 1, K = 1) as functions of the resolution N = Nx = Ny for Re = 1000, including the asymptotic edge-flow solution. Symbols e, h

and D, connected by dotted lines, indicate the corresponding values without the use of the asymptotic solutions. The respective

resolutions in z direction are listed in Table 8.



Table 8

Maximum amplitudes of the constant mode (m = 0) of the velocities v and u on the positive x- and y-axis in dependence of the grid

resolution

Nx · Ny · Nz maxyAu,m = 0 y maxx > 0Av,m = 0 x Oð�Þ
24 · 24 · 17 496.2805 0.4093 343.4480 0.3228 10�3

26 · 26 · 19 493.3473 0.4081 344.2996 0.3248 <10�7

28 · 28 · 21 492.9590 0.4086 344.1470 0.3246 10�5

30 · 30 · 23 491.4466 0.4085 343.1649 0.3248 10�7

32 · 32 · 25 490.3391 0.4084 342.3138 0.3250 10�3

34 · 34 · 27 489.1522 0.4083 341.7372 0.3251 <10�7

36 · 36 · 27 488.6639 0.4084 341.3982 0.3251 <10�7

48 · 48 · 33 488.1099 0.4083 341.0659 0.3250 <10�7

64 · 64 · 49 488.1580 0.4083 341.0920 0.3251 <10�7

96 · 96 · 65 488.1588 0.4083 341.0921 0.3251 <10�7

The parameters are Re = 1000, C = 1, and K = 1. The data are given for periodic boundary conditions including the asymptotic

solutions.
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solutions improves the convergence. The numerical effort can be reduced significantly if the accuracy

requirements are relaxed to some degree, allowing the use of a lower resolution.

It is interesting to note that the Taylor–Görtler vortices calculated at low resolution are not exactly stea-

dy. The vortices as a whole are very slowly drifting in z-direction. Therefore, the termination criterion (20)

with � = 10�7 cannot be reached and the criterion had to be relaxed. The order of magnitude of � required
to terminate the time-integration is tabulated in Table 8 together with the amplitude data. From � and the

time-step Dt, the order of magnitude of the phase speed of the artificial drift can be obtained. For resolu-

tions larger than Nx = Ny = 32 (Nz = 25) the calculated Taylor–Görtler vortices are found to be steady as
t ! 1 and we were able to apply the previously used termination criterion � = 10�7. Note, however, that

the minute drift practically does not change the good convergence of the method for low resolutions.

A quantitative convergence study is provided in Table 8. The maximum amplitudes of the constant Fou-

rier mode m = 0, representing the two-dimensional part of the flow, are tabulated. Similar as for no-slip

boundary conditions, the accuracy of the Fourier mode m = 0 at the highest resolution is better than

dAm = 0/Re < 10�5. A comparable accuracy and convergence rate is obtained for the Fourier mode

m = 3. Values of the amplitude Am = 3 at the (x, y)-location at which the fundamental mode m = 0 reaches

its maximum are given in Table 9.
Table 9

Amplitudes of the third harmonic (m = 3) of the velocity components u and v in dependence of the resolution

Nx · Ny · Nz Au;m¼3jmaxyAu;m¼0
Av;m¼3jmaxx>0Av;m¼0

24 · 24 · 17 20.0578 3.6096

26 · 26 · 19 19.4779 3.5000

28 · 28 · 21 18.4349 3.0890

30 · 30 · 23 18.1826 3.0406

32 · 32 · 25 18.0651 3.0939

34 · 34 · 27 17.9293 3.1619

36 · 36 · 27 17.8617 3.1497

48 · 48 · 33 17.7922 3.1366

64 · 64 · 49 17.7952 3.1395

96 · 96 · 65 17.7953 3.1394

The values are taken on the positive y and x axis, respectively, where the constant mode (m = 0) takes its maximum (see table 8). The

parameters and conditions are the same as for Table 8.
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A global criterion for the convergence is the L2
x-norm of the amplitudes
Fig. 10

e) usi

used t
L2
xðAÞ ¼

1

Re
kAu � Au;refk2L2x þ kAv � Av;refk2L2x þ kAw � Aw;refk2L2x
� �1=2

; ð24Þ
where, e.g., kAu � Au;refkL2x is defined by
kAu � Au;refkL2x ¼
XðNz�1Þ=2�1

m¼0

Z
X
Au;mðxÞ � Au;m;refðxÞj j2nðxÞ dx

 !1=2

ð25Þ
with X = [�0.5, 0.5]2 and the weight (C = 1)
nðxÞ ¼ 1� 2xð Þ2
h i

� 1� 2yð Þ2
h in o�1=2

: ð26Þ
As reference quantities the amplitudes obtained on the grid Nx · Ny · Nz = 96 · 96 · 65 are used, which

have been computed by including the asymptotic edge-flow solutions into the ansatz. The integrals are

approximated by sums using the Gauss–Lobatto formula for an interpolation grid with M · M nodes.

In Fig. 10, the L2
x-norm is plotted as a function of the grid size N = Nx = Ny (for Nz see Table 8) for the

cases in which the asymptotic solution is included in (solid line, h) and excluded from the ansatz (dashed

line,e). To estimate the error caused by the finite sums entering the norm, the L2
x-norm has been calculated

on two different interpolation grids, M = 180 (lines) and M = 400 (symbols). Both interpolations yield
nearly identical results. Hence, the error associated with the calculation of the norm can be neglected for

the present purpose.

From Fig. 10 the calculations including the asymptotic edge-flow solutions into the ansatz converge

algebraically like �N�5.7. The convergence rate without the inclusion of the asymptotic solutions is much

weaker and approximately �N�c with c = 1.1. These convergence-rate exponents c for periodic three-

dimensional cavity flows are in good agreement with the results of Bottela [7] and Botella and Peyret [9]

obtained for two-dimensional cavity flow (see the discussion in Section 5.1). Numerically they obtained

c = 5.1 when including, and c = 1.1 when excluding the asymptotic solutions. Our results for three-dimen-
sional flow also confirm the relation c = 2a + 1 of Bottela and Peyret [9] between the convergence-rate expo-

nent c and the exponent a of the strongest edge-flow singularity which is a = 2 when the two leading-order

terms of the asymptotic edge-flow solution are included into the ansatz as described in Section 3.2.
. L2
x-norm of the amplitudes as functions of the number of grid points N = Nx = Ny with (full line,h) and without (dashed line,

ng the asymptotic solutions. The dotted lines indicate the respective power laws N�5.7 and N�1.1. The interpolation grid sizes

o calculate the norms are M = 180 (lines) and M = 400 (symbols).
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Finally, the velocity components on the centerlines (x, 0, zi) and (0, y, zi) are listed in Tables 5 and 6 for

two planes i = 0,1. When using periodic boundary condition in z-direction the phase of the three-

dimensional flow is not fixed. To eliminate the phase the data are evaluated at two characteristic locations

zi relative to the periodic flow. In the present case the three-dimensional flow consists of steady rectangular

cells in form of Taylor–Görtler-vortices. In agreement with Albensoeder et al. [2] we find that the velocity
component w periodically vanishes on the cell boundaries, i.e. on planes z = const., equidistantly spaced by

Dz = k/2 = K/6, where k is the wavelength of the Taylor–Görtler vortices. Midway between two successive

planes w as a function of z has an extremum. The reference planes zi = const. for which the velocity data are

given in Tables 5 and 6 are successive planes on which ozw = 0 (i = 0) and w = 0 (i = 1), i.e., z1 = z0 + K/6.
Since three pairs of Taylor–Görtler vortices fit the full periodicity length K, there are six pairs of planes like

z0 and z1. Although the periodicity is strictly enforced only every sixth plane we find the flow to be exactly

periodic with period k = K/3. For future comparison note, however, that the velocity components u and v

take different values on two successive plane of the same type (either ozw = 0 or w = 0), because the velocity
field of the three-dimensional Taylor–Görtler vortices which is superposed on the two-dimensional part of

the flow alternates with period k. For the sake of brevity we have only presented one possibility in Tables 5

and 6 and omitted the data for the other case.
6. Conclusion

We have presented an efficient numerical method for calculating three-dimensional lid-driven cavity
flows using pure Chebyshev collocation for rigid boundary conditions in the spanwise z-direction and a

mixed Chebyshev-collocation–Fourier method for periodic boundary conditions in z-direction. Both meth-

ods represent extensions of the work of Botella and Peyret [8] to three-dimensions. In order to improve the

accuracy of the spectral methods the singularities that the exact solution exhibits along the edges on which

the boundary conditions are not continuous have been partly reduced. This was accomplished in a similar

manner as in Botella and Peyret [8] by subtracting the leading-order singularities of the asymptotic edge-

flow solutions for the edges along which the normal velocity is discontinuous. Numerical solutions were

then calculated for the residual flow field which is less singular than the full flow field. We have provided
highly accurate data for a number of representative three-dimensional cavity flows for Reynolds number

Re = 1000 and various aspect ratios. A number of important flow data are summarized in Table 10.
Table 10

Extremal velocities on the centerlines of the cavity for selected span aspect ratios K

Rigid b.c. Periodic b.c.

K = 1 (96 · 96 · 64) K = 2 (96 · 96 · 96) K = 3 (96 · 96 · 96) K = 1 (96 · 96 · 65)

max u/Re 0.4350186 0.4735850 0.4901725 0.5260779 0.4550700

At x = (0, y, 0) 0.40957 0.41077 0.40967 0.40097 0.41524

minu/Re �0.2466511 �0.2940967 �0.3235474 �0.3058705 �0.3283077

At x = (0, y, 0) �0.39087 �0.35883 �0.37629 �0.34152 �0.28487

min v/Re �0.2803833 �0.3197651 �0.3444587 �0.3617047 �0.3411548

At x = (x, 0, 0) 0.37581 0.36944 0.36334 0.37024 0.30060

min w/Re �0.0303398 �0.0429372 �0.0534788 �0.0007703 �0.0007703

At x = (0, 0, z) 0.36492 0.87423 1.37922 0.25149 0.25149

The x and y locations of the extrema of u and v for periodic boundary conditions are taken in the plane z0 = 0 (left column) and in the

plane z1 ¼ z0 þ K=6 ¼ 0:1�6 (right column) in which the velocity component w vanishes. All calculations were made including the

asymptotic solutions.
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For periodic end-wall boundary conditions the residual flow satisfies much smoother boundary condi-

tions than the full flow field. Hence, the numerical solution for the residual flow converges much faster than

the conventional solution which does not take into account the specific flow structure near the singular

edges. Even at moderate resolutions a significant gain in accuracy is obtained. In particular, we provided

benchmark data for periodic three-dimensional Taylor–Görtler vortices in the unit cube at Reynolds num-
ber Re = 1000. This case is typical for three-dimensional flow structures generated by bulk flow instabilities.

For rigid end-wall boundary conditions not all edge and and corner singularities can be removed by a

simple subtraction. Therefore, significant singularities of the tangential velocity remain along the edges

formed by the moving lid and the end-walls. Global convergence studies show that the remaining tangen-

tial-flow singularities at the end walls annihilate the positive effect obtained by subtracting the leading-order

singularities associated with the normal-velocity discontinuities. This effect is particularly important in the

vicinity of the end-walls. In the bulk of the cavity, however, the effect of the end-wall singularities is less

pronounced and a substantial convergence acceleration is obtained locally. Regardless of the end-wall
boundary conditions, our convergence studies confirm the result of Bottela and Peyret [9] who related

the exponent c of the error OðN�cÞ of Chebyshev methods to the smallest real part of the exponent a of

the asymptotic edge solution of the form u = raf(h).
Of course, an elimination of the leading-order singular terms by subtracting them from the full solution

is highly desirable for the rigid-boundary case. Because this cannot be achieved by a simple subtraction of

the individual asymptotic solutions provided by Gomilko et al. [21] for the four singular corners, analytical

solutions are required that simultaneously satisfy the discontinuous boundary condition for two corners

which have a singular edge in common and which are separated by a finite distance. The solution of this
problem, however, remains a formidable task for future analytical investigations.
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